5 research outputs found

    Study of Damage Propagation at the Interface Localization-Delocalization Transition of the Confined Ising Model

    Full text link
    The propagation of damage in a confined magnetic Ising film, with short range competing magnetic fields (hh) acting at opposite walls, is studied by means of Monte Carlo simulations. Due to the presence of the fields, the film undergoes a wetting transition at a well defined critical temperature Tw(h)T_w(h). In fact, the competing fields causes the occurrence of an interface between magnetic domains of different orientation. For TTw(h)T T_w(h)) such interface is bounded (unbounded) to the walls, while right at Tw(h)T_w(h) the interface is essentially located at the center of the film. It is found that the spatio-temporal spreading of the damage becomes considerably enhanced by the presence of the interface, which act as a ''catalyst'' of the damage causing an enhancement of the total damaged area. The critical points for damage spreading are evaluated by extrapolation to the thermodynamic limit using a finite-size scaling approach. Furthermore, the wetting transition effectively shifts the location of the damage spreading critical points, as compared with the well known critical temperature of the order-disorder transition characteristic of the Ising model. Such a critical points are found to be placed within the non-wet phase.Comment: 22 pages, 13 figures include

    The Hormonal Control of Hair Growth

    No full text
    corecore